

T.b.v. van de deelnemers aan de TOA dag op zaterdag 22 April 2017 in de Schakel te Nijkerk, bieden wij de volledige presentatie aan over voorsegment map interpretatie en sleutelfactoren voor een goed onderzoek.

Daarnaast bieden wij u toegang tot de Ziemer e-learning site. U kunt zich hier gratis registreren, ook als u gebruiker bent van andere apparatuur.

https://www.e-learning.ziemergroup.com

De site biedt een verzameling korte video's over zowel de toepassingen (ESCRS lezingen e.d.), maar ook duidelijke uitleg over bijv. het begrip elevatie map en nog veel meer. Van harte aanbevolen.

Meer informatie kunt u krijgen bij Laméris Ootech BV te Ede: 030-6008711 of via ootech@ootech.nl.

Corneal Topography & Tomography

Introduction to measurement parameters and basic map interpretation,

and key factors for obtaining good quality measurements

Gregor Schmid, PhD

Senior Expert Clinical Applications (R&D) Ziemer Ophthalmic Systems AG, Switzerland

Topography & Tomography

GALILEI

Dual-Scheimpflug Tomography Placido Disk Topography

Scheimpflug Tomography

Scheimpflug Principle

Scheimpflug Tomography

Single Scheimpflug:

Pros:

- Can measure anterior <u>and</u> posterior corneal surface
- Allows 3D view of the cornea
- Works well even in dry eyes
- Permits precise pachymetry <u>when well centered</u>
- Provides peripheral data

Cons:

- Does not permit precise pachymetry when decentered
- Precision for curvature is reduced in central area

Dual-Scheimpflug:

Compensation of eye decentration allows precise pachymetry under difficult circumstances (e.g. poor fixation, eye movements, inexperienced operator).

Apparent Corneal Thickness when centered

- When centered, the slit light is perpendicular to the surface
- Apparent thickness with the right and left SF camera are equal

Dual-Scheimpflug Tomography

Apparent Corneal Thickness when de-centered

- The slit light is not perpendicular to the surface
- Apparent thickness is thinner/thicker than at center
- Averaging automatically corrects de-centration

Placido Topography

Placido Rings

Placido Topography

Placido based topographers work on the principle of assessing the reflection of a concentric set of white rings from the convex anterior surface of the cornea

Placido Topography

Pros:

• Allows accurate measurement of the anterior surface curvature

Cons:

- Suffers from dependency on tear film quality
- Provides no information on posterior surface and pachymetry
- Is limited to central area

Dual Scheimpflug + Placido

→ Combines the best of both worlds to produce the most complete data set of the anterior segment

Maps and measurements aligned to apex (1st Purkinje images)

Motion Compensation using iris pattern

- a) Lateral motion correction (x/y-directions)
- b) Rotational correction (around z-axis)

b)

HOW TO GET GOOD MEASUREMENTS

Left-Right/Up-Down

In-Out

2. Tear Film

3. Partial Lid Closure

4. Eye Movement

Tips for good quality measurements

Make sure...

- Patient is well instructed
- Head is correctly aligned (fore-front, chin, head-turn)
- Mouth/jaw is closed
- Eye is wide open during scans

Procedure:

- **1. Align the device**
- 2. Tell patient to blink one more time and open wide
- 3. Fine-align and initiate the measurement quickly
- 4. Start again if needed, there is no need to rush

Measurement Quality Values

Analysis Report		4.3 1 4.5.9	×
Surface alignment:	ок		
	Actual	Recomm.	
Motion Comp. 🗸	100.0%	85.0%	
Placido 🗸	⁄ 93.0%	85.0%	
Scheimpflug 🗸	/ 98.7%	90.0%	
Motion Distance 🗸	100.0%	70.0%	
Overall Quality	97.5%		

Quick Guide to taking successful Measurements

1, Position Patient

Adjust table height to maximize patient's comfort. Patient's head should be straight, positioned centrally with forehead against the headrest and chin touching the front edge of the chinrest.

2. Adjust Headrest Align patient's lower lid to black marker on the headrest post. Turn the headrest to the left to measure OD and to the right to measure OS.

5. Fixate Target Ask patient to fixate on visible red bull's eye target.

6. Center

Align the red crosshair to the 4 white dots in the top view image by rotating the joystick.

3. Dim Room Lights Dim lighting in the room to prevent interfering light reflections during the capture.

4. Gross Alignment Enter scan mode.

- a. Move the device to the OS or OD sign on the table (consider the correct position of your headrest, \$99 2.)
- b. Using the joystick, align the measurement head so that the horizontal blue light from the slit lamp is centered on the patient's pupil.
- c. Move the joystick right or left for horizontal and rotate up or down for vertical alignment. Move forward or backward to put the eye into focus.

7. Fine Alignment Align the red reference line to the

anterior surface of the cornea by moving the joystick forward or backward. The red line should not intersect the comea, but just touch it.

E

8. Blink and Open Wide Ask the patient to blink and keep the eye open wide.

9. Scan Press the scan button on the joystick.

Support First contact your local service provider First contact your local service provider. Ziermer Cuatomer Support +40 945 942 637 all countries society USA and Caneda 868-708-4472 for USA and Canada www.siernergroup.com/services/support

GALILEI G4

Quality Check Guide

- A Good quality measurement: measurement is centered and comea aligned to the red reference line
- B Poor quality measurement: nose shadow, here at the bottom right, is covering the eye
- C Poor quality measurement: eye lashes or lid are covering the eye

×

A

C Poor quality measurement: cornea is too far from the red reference line

reference line

reference line

- A Head should be straight, positioned centrally with forehead against the headrest and chin touching the front edge of the chinrest. Patient is focu-sing well on the red reference target.
- B Heed is not positioned correctly: heed is tilted, foreheed is not touching the headrest, chin is not touching the front edge of the chinrest. Patient is not focusing well on the red reference target. Adjust height of table and chinrest to correct your patient's position.

Photo vs. Map

Anterior Axial Curvature [D]

Photo vs. Map

Anterior Axial Curvature [D] n 1.3375 No map alignment

Anterior Axial Curvature

24.04.2017

WTR Astigmatism

4.75

n 1.3375

0.89 mm

-0.45 mm

-0.18 mm

ATR Astigmatism

Oblique Astigmatism

Curvature

Curvature = n/r

Anterior:

• SimK = calculated with keratometric index (1.3375)

assuming constant ratio of anterior & posterior

cornea

- Scale with adjustable step-size
- Towards red/white: steeper, towards blue = flatter

Posterior:

- Posterior K = calculated with index of refraction of cornea (1.376) and aqueous humour (1.336) with ray-tracing
- Negative power

- Instantaneous Curvature = <u>local</u> representation of curvature (C₁, C₂)
- **Axial Curvature** = <u>smoothened</u> curvature (radius extended to reference axis: A₁, A₂), making steep areas flatter, and flat areas steeper

Axial Curvature

	SimK					n 1.3375
	SimK	46.95 D		R	7.19 mm	
rD1	Flat SimK	45.85 D	174°	R1	7.36 mm	
[9]	Steep SimK	48.05 D	84°	R2	7.02 mm	
61.00	Astig	2.20 D	84°	e² (-Q)	0.34	
60.00	Posterior Axia	al Curvature				
59.00	Mean K	-6.70 D		R	5.97 mm	
58.00	Flat K	-6.57 D	1 °	R1	6.09 mm	
58.00	Steep K	-6.83 D	91°	R2	5.85 mm	
57.00	Astig	-0.27 D	91°	e² (-Q)	0.68	
56.00	Total Corneal	Power IOL	(Ray Trace	ed)		
55.00	Mean TCPIOL	45.97 D		Central	45.89 D	
E4 00	Flat TCPIOL	44.84 D	172°	Mid	46.60 D	
54.00	Steep TCPIOL	47.10 D	82°	Periph	45.66 D	
53.00	Astig	2.26 D	82°			
52.00	Pachymetry					
51.00	o Thinnest	620 µm		х,у	0.23 mm	-0.45 mm
	Central	630 µm		CCT	621 µm	
50.00	Mid	667 µm				
49.00	Periph	725 µm		Corneal Vol.	34.8 mm³	
48.00	Anterior Axial	Curvature 3	Zones			n 1.3375
47.00	Central	47.03 D	7.18 mm			
47.00	Mid	46.19 D	7.31 mm			
46.00	Periph	43.55 D	7.75 mm			
45.00	Kmax	48.68 D	6.93 mm	location x,y	0.14 mm	0.89 mm
44 00	Anterior Chan	nber and Bi	ometry			
	WTW, N-T	11.52 mm		Mean Angle	30.9 °	
43.00	ACV	90 mm³		Kappa Dist	0.34 mm	
42.00	ACD	3.05 mm		ASL endo	n/a	
41.00	+ Pupil Diam	2.71 mm		location x,y	0.29 mm	-0.18 mm
40.00	Corneal Shap	e Asymmetr	у			
40.00	KPI	9.4 %		Kprob	8.1 %	
39.00	CLMIaa	0.94 D		PPK	1.2 %	
38.00						
27.00						

36,00

35.00

34.00

33.00

Instantaneous Curvature

	SimK					n 1.3375
	SimK	46.95 D		R	7.19 mm	
[0]	Flat SimK	45.85 D	174°	R1	7.36 mm	
[0]	Steep SimK	48.05 D	84°	R2	7.02 mm	
68.00	Astig	2.20 D	84°	e² (-Q)	0.34	
66.50	Posterior Axia	l Curvatur	9			
65.00	Mean K	-6.70 D		R	5.97 mm	
62 50	Flat K	-6.57 D	1 °	R1	6.09 mm	
65.50	Steep K	-6.83 D	91°	R2	5.85 mm	
62.00	Astig	-0.27 D	91°	e² (-Q)	0.68	
60.50	Total Corneal	Power IOL	. (Ray Trac	ed)		
59.00	Mean TCPIOL	45.97 D		Central	45.89 D	
57 50	Flat TCPIOL	44.84 D	172°	Mid	46.60 D	
57.50	Steep TCPIOL	47.10 D	82°	Periph	45.66 D	
56.00	Astig	2.26 D	82°			
54.50	Pachymetry					
53.00	o Thinnest	620 µm		x,y	0.23 mm	-0.45 mm
E1 E0	Central	630 µm		CCT	621 µm	
51.50	Mid	667 µm				
50.00	Periph	725 µm		Corneal Vol.	34.8 mm³	
48.50	Anterior Insta	antaneous (Curvature Z	ones		n 1.3375
47 00	Central	46.80 D	7.21 mm			
41.00	Mid	43.21 D	7.81 mm			
45.50	Periph	33.90 D	9.96 mm			
44.00	Kmax	48.85 D	6.91 mm	location x,y	0.15 mm	0.68 mm
42.50	Anterior Chan	nber and B	iometry			
	WTW, N-T	11.52 mm		Mean Angle	30.9 °	
41.00	ACV	90 mm³		Kappa Dist	0.34 mm	
39.50	ACD	3.05 mm		ASL endo	n/a	
38.00	+ Pupil Diam	2.71 mm		location x,y	0.29 mm	-0.18 mm
20 50	Corneal Shap	e Asymmet	ry			
36.50	KPI	9.4 %		Kprob	8.1 %	
35.00	CLMIaa	0.94 D		PPK	1.2 %	
33.50						

32.00

30.50

29.00

27.50

26.00

Instantaneous Curvature: mm

	SimK					n 1.3375
	SimK	43.94 D		R	7.68 mm	
	Flat SimK	43.70 D	53°	R1	7.72 mm	
[mm]	Steen Simk	44 18 D	1439	R2	7.64 mm	
15.5	Astia	0.48 D	1430	e3 (-0)	0.17	
10.0	Destarian Avia		145	८ (२)	0.17	
15.0	Posterior Axia		2		6.70	
14.5	Mean K	-5.90 D		R	6.78 mm	
14.5	Flat K	-5.78 D	1100	R1	6.92 mm	
14.0	Steep K	-6.01 D	20°	R2	6.65 mm	
12.5	Astig	-0.23 D	20°	e² (-Q)	-1.36	
13.5	Total Corneal	Power IOL	. (Ray Trac	ed)		
13.0	Mean TCPIOL	43.28 D		Central	43.30 D	
10.5	Flat TCPIOL	42.95 D	45°	Mid	43.98 D	
12.5	Steep TCPIOL	43.61 D	135°	Periph	45.64 D	
12.0	Astig	0.67 D	135°			
	Pachymetry					
11.5	o Thinnest	450 µm		х, у	0.66 mm	-1.35 mm
11.0	Central	459 um		сст	455 um	
	Mid	489 um				
10.5	Periph	549 um		Corneal Vol.	25.6 mm ³	
10.0	Anterior Insta	antaneous (°urvature '	Zones		
	Central	43 76 D	serveene .	Lones		
9.5	Mid	43.76 D				
9.0	Derinh	41.70 D				
	Kmax	41.70 D	7.60 mm	location v v	0.09 mm	0.06 mm
8.5		44.45 <i>D</i>	7.00 mm	location x,y	-0.08 mm	0.00 11111
8.0	Anterior Chan	nder and Bi	ometry			
	WIW, N-1	11.23 mm		Mean Angle	52.5 0	
7.5	ACV	233 mm²		Kappa Dist	0.07 mm	
7.0	AQD	3.93 mm		ASL endo	n/a	
	+ Pupil Diam	6.22 mm		location x,y	0.03 mm	0.06 mm
6.5	Corneal Shap	e Asymmeti	ry			
6.0	CLMIaa	0.10 D		PPK	0.2 %	
5.5						
5.0						
4.5						
40						
3.5						
3.0						
0.0						
2.5						
2.0						
1.5						

Eye

Instantaneous Curvature: mm

Posterior Instantaneous Curvature Radius [mm]

	SimK					n 1.3375
	SimK	43.94 D		R	7.68 mm	
mm1	Flat SimK	43.70 D	53°	R1	7.72 mm	
mmj	Steep SimK	44.18 D	143°	R2	7.64 mm	
-6.0	Astig	0.48 D	143°	e² (-Q)	0.17	
-5.2	Posterior Axia	al Curvature	;			
0.2	Mean K	-5.90 D		R	6.78 mm	
-4.5	Flat K	-5.78 D	110°	R1	6.92 mm	
-3.8	Steep K	-6.01 D	20°	R2	6.65 mm	
0.0	Astig	-0.23 D	20°	e² (-Q)	-1.36	
-3.0	Total Corneal	Power IOL	(Ray Tr	aced)		
-2.2	Mean TCPIOL	43.28 D		Central	43.30 D	
	Flat TCPIOL	42.95 D	45°	Mid	43.98 D	
-1.5	Steep TCPIOL	43.61 D	135°	Periph	45.64 D	
-0.8	Astig	0.67 D	135°			
	Pachymetry					
0.0	o Thinnest	450 µm		х,у	0.66 mm	-1.35 mm
0.8	Central	459 µm		CCT	455 µm	
1.5	Mid	489 µm				
1.5	Periph	549 µm		Corneal Vol.	25.6 mm³	
2.2	Posterior Inst	antaneous	Curvatu	e Zones		
3.0	Central	-6.03 D				
	Mid	-5.93 D				
3.8	Periph	-5.73 D				
4.5	Anterior Chan	nbe <mark>r</mark> and Bi	ometry			
	WTW, N-T	11.23 mm		Mean Angle	52.5 °	
5.2	ACV	233 mm³		Kappa Dist	0.07 mm	
6.0	AQD	3.93 mm		ASL endo	n/a	
	+ Pupil Diam	6.22 mm		location x,y	0.03 mm	0.06 mm
0.0	Corneal Shap	e Asymmetr	'y			
7.5	CLMIaa	0.10 D		PPK	0.2 %	
8.2						
9.0						

9.8

10.5

11.2

12.0

12.8

13.5

14.2

15.0

Eye

36

Refractive Power

 Calculated by ray-tracing through the anterior corneal surface

• f = focal length, n = refractive index

- Focal length is determined as the distance from the reference plane to the intersection of the ray with the central axis
- To determine the focal length the reference plane is the anterior corneal suface in this case

Total Corneal Power (TCP)

 Calculated by ray-tracing through the anterior and posterior corneal surface, taking into account the actual indices of refraction (n)

- TCPIOLis calculated using naqueous = 1.336. To determine the focal length (f), the reference plane is the posterior corneal suface
- TCPIOL gives a more realistic characterisation of the anterior and posterior corneal surface.

The results will however deviate from SimK and cannot be used in traditional IOL formulas.

Pachymetry

- Shows corneal thickness profiles in 20 µm steps
- Towards red/white: thinning, towards blue: thickening
- Thinnest point = indicated by a small circle
- CCT = central corneal thickness; corresponds to central value of the map

Elevation

-10 -20 -30 -40 -50 -60 -70

- Elevation requires a reference (plane, sphere, asphere,...). **GALILEI: BFS, BFA, BFTA**
- Example: Elevation of a mountain

Elevation

Corneal Shape Asymmetries

[µm]

-10

445050650

	SimK					n 1.3375
	SimK	44.73 D		R	7.55 mm	
um]	Flat SimK	44.41 D	158°	R1	7.60 mm	
75	Steep SimK	45.05 D	68°	R2	7.49 mm	
65	Astig	0.64 D	68°	e² (-Q)	0.53	
55	Anterior Insta	ntaneous Cu	urvature	(Tangential))	n 1.3375
45	Mean K	44.13 D		R	7.65 mm	
40 35	Flat K	43.83 D	159°	R1	7.70 mm	
30	Steep K	44.42 D	69°	R2	7.60 mm	
20	Astig	0.59 D	69°	e² (-Q)	0.53	
10	Total Corneal	Power IOL (Ray Tra	ced)		
0	Mean TCPIOL	43.86 D		Central	43.75 D	
-5 -10	Flat TCPIOL	43.59 D	151°	Mid	43.66 D	
-15	Steep TCPIOL	44.13 D	61°	Periph	42.34 D	
-25	Astig	0.54 D	61°			
-35	Anterior Cham	ber and Bio	metry			
-40	WTW, N-T	12.42 mm		Mean Angle	24.8 °	
-50 -55	ACV	81 mm³		Kappa Dist	0.25 mm	
-60	ACD	2.85 mm		ASL endo	n/a	
-70	+ Pupil Diam	1.90 mm		location x,y	-0.15 mm	0.20 mm
-80	Pachymetry					
-85	o Thinnest	608µm		х, у	-0.34 mm	-0.49 mm
	Central	618µm		CCT	611µm	
	Mid	656 µm				
um]	Pe r iph	712µm		Corneal Vol.	34.3 mm³	
70	Corneal Shape	e Asymmetry	& Indic	es		
65 60	KPI	28.1 %		Kprob	58.9 %	
55 50	CLMIaa	1.33 D		PPK	2.6 %	
45	I-S	0.83 D		DSI	2.48 D	
35	SAI	1.39 D		OSI	2.31 D	
25	SRI	1.02 D		CSI	0.88 D	
20	IAI	0.50 D		ACP	44.83 D	
10	AA	100.0 %		SDP	2.06 D	
ŏ						

Total Corneal Wavefront

Corneal Wavefront Aberrations:

- Path length differences between the actual wavefront and a plane wavefront at the entrance pupil, normally expressed in µm
- Most common aberrations: spherical aberration, astigmatism, coma, defocus

• **Spherical Aberration:** occurs when light experience stronger refractive power at the periphery of the cornea, resulting in a region of defocused light and decreased image quality.

Comparison

Eye Metrics

Colorized Image 🔘 Cornea focussed enhancement

- 1

Densitometry

 Filters

 Inversed Image
 No enhancement

 Colorized Image
 Cornea focussed enhancement

Clinical Benefits GALILEI

- Reliable and fast topography and tomography screening
- Highly accurate anterior and posterior curvature assessment for sensitive keratoconus screening
- Maps and data aligned to the same reference the visual axis
- Spherical and aspherical aberrations for wave front guided treatments and toric IOL selection

GALILEI G4 Dual Scheimpflug Analyzer

GALILEI G6 Lens Professional